I et nyt DIREC-projekt er AI-forskere og sygehuse gået sammen om at skabe mere nyttig AI og AI-algoritmer, der er lettere at forstå. Målet med projektet er at øge brugen af AI på sygehuse.
Kunstig intelligens får gradvist en mere central rolle inden for medicinske hjælpeteknologier, som fx billedbaseret diagnose, hvor den kunstige intelligens med høj præcision kan analysere skanningsbilleder. Teknologien er derimod sjældent designet som en samarbejdspartner for lægepersonalet.
I et nyt human-AI-projekt ’EXPLAIN-ME’ – støttet af det nationale forskningscenter DIREC vil AI-forskere sammen med læger udvikle forklarlig kunstig intelligens (Explainable AI – XAI), der kan give klinikere feedback, når de uddanner sig på hospitalernes træningsklinikker.
I projektet samarbejder DTU, Københavns Universitet, Aalborg Universitet og Roskilde Universitet med læger på trænings- og simulationscentret CAMES på Rigshospitalet, NordSim på Aalborg Universitetshospital samt kræftlæger på Urologisk Afdeling på Sjællands Universitetshospital i Roskilde.
Ultralydsskanning af gravide
På CAMES vil DTU og Københavns Universitet udvikle en XAI-model, der kigger læger og jordemødre over skulderen, når de i træningsklinikken ultralydsskanner ’gravide’ træningsdukker.
Inden for ultralydsskanning arbejder klinikere ud fra specifikke ’standardplaner’, som viser forskellige dele af fostrets anatomi, så man kan reagere ved komplikationer. Reglerne bliver implementeret i XAI-modellen, der bliver integreret i en simulator, så lægen får feedback undervejs.
Forskerne træner den kunstige intelligens på rigtige data fra Rigshospitalets ultralydsskanninger fra 2009 til 2018, og det er primært billeder fra de almindelige nakkefolds- og misdannelsesskanninger, som alle gravide tilbydes cirka 12 og 20 uger inde i graviditeten. Når XAI-modellerne om godt et års tid vil blive anvendt på træningsklinikken, skal man først tjekke, om modellen også virker i simulatoren, eftersom EAI-modellen er trænet på rigtige data, mens træningsdukken er kunstige data.
Ifølge læger afhænger kvaliteten af ultralydsskanninger og evnen til at stille rette diagnoser af, hvor megen træning lægerne har fået.
”Hvis vores model undervejs kan fortælle lægen, at der mangler en fod i billedet for, at billedet er godt nok, vil lægen muligvis kunne lære hurtigere. Hvis vi også kan få XAI-modellen til at fortælle, at sonden på ultralydsapparatet skal flyttes lidt for at få alt med i billedet, så kan det måske anvendes i lægepraksis også. Det ville være fantastisk, hvis XAI også kan hjælpe mindre trænede læger til at lave skanninger, der er på højde med de meget trænede læger,” siger Aasa Feragen.
Løbende feedback ved robotkirurgi
Med robotkirurgi har kirurger mulighed for at udføre deres arbejde med mere præcision og kontrol end traditionelle kirurgiske værktøjer. Det reducerer fejl og øger effektiviteten, og forventningen er, at AI vil kunne forbedre resultaterne yderligere.
I Aalborg skal forskerne udvikle en XAI-model, der støtter lægerne i træningscentret NordSim, hvor både danske og udenlandske læger kan træne kirurgi og operationer i robotsimulatorer med fx grisehjerter. Modellen skal give løbende feedback til klinikerne, imens de træner en operation, og uden at det forstyrrer, fortæller Mikael B. Skov, professor på Department of Computer Science ved AAU.
Billedanalyser ved nyrekræft
Læger skal ofte træffe beslutninger under tidspres, fx i forbindelse med kræftdiagnoser, fordi man vil undgå, at kræften spreder sig. En falsk positiv diagnose kan derfor betyde, at patienten får fjernet en rask nyre og påføres andre komplikationer. Selv om erfaringen viser, at AI-metoder er mere præcise i vurderingerne end lægerne, har lægerne brug for en god forklaring på, hvorfor de matematiske modeller klassificerer en tumor som godartet eller ondartet.
I DIREC-projektet vil forskere fra Roskilde Universitet udvikle metoder, hvor kunstig intelligens analyserer medicinske billeder til brug ved diagnosticering af nyrekræft. Lægerne vil hjælpe dem med at forstå, hvilken feedback der er brug for fra AI-modellerne, så man finder en balance mellem, hvad der er teknisk muligt, og hvad der er klinisk nødvendigt.
”Det er vigtigt, at teknologien skal kunne indgå i hospitalernes praksis, og derfor har vi især fokus på at designe de her metoder inden for ’Explainable AI’ i direkte samarbejde med de læger, der rent faktisk skal bruge den i deres beslutningstagning. Her trækker vi især på vores ekspertise inden for Participatory Design, som er en systematisk tilgang til at opnå den bedste synergi mellem, hvad AI-forskeren kan komme op med af teknologiske innovationer, og hvad lægerne har brug for,” siger Henning Christiansen, professor i datalogi på Institut for Mennesker og Teknologi på Roskilde Universitet.
Du kan læse den fulde artikel her
Foto: iStock
Seneste aktuelt
13. september 2024
Stort dansk tale-datasæt frigivet
13. september 2024
En styrket europæisk konkurrenceevne kræver investering i innovation
13. september 2024
Konference: Kunstig intelligens i fødevareindustrien
11. september 2024